JavaScript/TypeScript SDK for inference.sh agents and apps.
The JavaScript SDK provides a fully-typed client for running apps and chatting with agents.
Installation
1npm install @inferencesh/sdkRunning Apps
Basic Usage
1import { inference } from '@inferencesh/sdk';2 3const client = inference({ apiKey: 'inf_your_key' });4 5// Run and wait for completion (default)6const result = await client.run({7 app: 'infsh/echo',8 input: { message: 'Hello from JavaScript!' }9});10 11console.log(result.output);With Progress Updates
1const result = await client.run(2 { app: 'infsh/flux-schnell', input: {...} },3 {4 onUpdate: (update) => {5 console.log(`Status: ${update.status}`);6 if (update.logs?.length) {7 console.log(update.logs[update.logs.length - 1]);8 }9 }10 }11);Fire and Forget
1const task = await client.run(2 { app: 'infsh/slow-task', input: {...} },3 { wait: false }4);5console.log(`Task ID: ${task.id}`);Agent SDK
Chat with AI agents programmatically.
Using an Existing Agent
Reference agents created in the workspace:
1import { inference } from '@inferencesh/sdk';2 3const client = inference({ apiKey: 'inf_your_key' });4 5// Use an agent you created in the workspace6const agent = client.agent('my-org/my-agent@abc123'); // Format: namespace/name@version7 8const response = await agent.sendMessage('Hello!');9console.log(response);Creating Ad-Hoc Agents
Create agents on-the-fly without saving to workspace:
1import { inference, tool, string, internalTools } from '@inferencesh/sdk';2 3const client = inference({ apiKey: 'inf_your_key' });4 5// Define tools6const calculator = tool('calculator')7 .describe('Performs math operations')8 .param('expression', string('Math expression'))9 .build();10 11// Create ad-hoc agent12const agent = client.agent({13 core_app_ref: 'infsh/claude-sonnet-4@latest',14 name: 'Math Assistant',15 system_prompt: 'You help with math. Use the calculator tool.',16 tools: [calculator],17 internal_tools: internalTools().memory().build(),18});19 20const response = await agent.sendMessage('What is 42 * 17?');Streaming Responses
1await agent.sendMessage('Explain quantum computing', {2 onMessage: (msg) => {3 if (msg.content) {4 for (const c of msg.content) {5 if (c.type === 'text' && c.text) {6 process.stdout.write(c.text);7 }8 }9 }10 },11 onToolCall: async (call) => {12 console.log(`\n[Tool: ${call.name}]`);13 // Execute tool and return result string14 const result = await executeMyTool(call.name, call.args);15 await agent.submitToolResult(call.id, result);16 17 // For widget interactions, you can also pass action + form_data:18 // await agent.submitToolResult(call.id, {19 // action: { type: 'confirm' },20 // form_data: { name: 'John', email: '[email protected]' }21 // });22 },23});File Attachments
1// From Blob2const imageBlob = new Blob([imageBuffer], { type: 'image/png' });3const response = await agent.sendMessage('What\'s in this image?', {4 files: [imageBlob]5});6 7// From data URI8const response = await agent.sendMessage('Analyze this', {9 files: ['...']10});Chat Management
1// Get current chat2const chat = await agent.getChat();3console.log(`Chat ID: ${chat?.id}`);4console.log(`Messages: ${chat?.messages.length}`);5 6// Stop generation7await agent.stopChat();8 9// Start fresh10agent.reset();11 12// Cleanup streams13agent.disconnect();Tool Builder
Define tools with the fluent API:
1import {2 tool, appTool, agentTool, webhookTool, internalTools,3 string, number, integer, boolean, enumOf, array, object, optional4} from '@inferencesh/sdk';5 6// Client tool (runs in your code)7const search = tool('search_files')8 .describe('Search for files')9 .param('pattern', string('Glob pattern'))10 .param('recursive', optional(boolean('Search subdirs')))11 .build();12 13// App tool (calls another inference app)14const generate = appTool('generate', 'infsh/flux-schnell@latest')15 .describe('Generate an image')16 .param('prompt', string('Image description'))17 .build();18 19// Agent tool (delegates to sub-agent)20const researcher = agentTool('research', 'my-org/researcher@v1')21 .describe('Research a topic')22 .param('topic', string('Topic'))23 .build();24 25// Webhook tool (calls external API)26const notify = webhookTool('slack', 'https://hooks.slack.com/...')27 .describe('Send Slack message')28 .secret('SLACK_SECRET')29 .param('message', string('Message'))30 .build();31 32// Internal tools config33const internals = internalTools().memory().plan().build();TypeScript Types
The SDK is fully typed:
1import type {2 TaskDTO,3 ChatDTO,4 ChatMessageDTO,5 AgentTool,6 TaskStatusCompleted,7 TaskStatusFailed,8} from '@inferencesh/sdk';9 10// Check task status11if (result.status === TaskStatusCompleted) {12 console.log('Done!');13} else if (result.status === TaskStatusFailed) {14 console.log('Failed:', result.error);15}CommonJS Support
1const { inference, tool, string } = require('@inferencesh/sdk');2 3const client = inference({ apiKey: 'inf_...' });4const result = await client.run({...});Error Handling
1import { RequirementsNotMetException, InferenceError } from '@inferencesh/sdk';2 3try {4 const result = await client.run({ app: 'my-app', input: {...} });5} catch (e) {6 if (e instanceof RequirementsNotMetException) {7 console.log('Missing requirements:');8 for (const err of e.errors) {9 console.log(` - ${err.type}: ${err.key}`);10 }11 } else if (e instanceof InferenceError) {12 console.log('API error:', e.message);13 }14}File Upload
1// Upload separately2const file = await client.uploadFile(buffer, {3 filename: 'image.png',4 contentType: 'image/png'5});6console.log(`Uploaded: ${file.uri}`);7 8// Use in app input9const result = await client.run({10 app: 'image-processor',11 input: { image: file.uri }12});REST API (curl)
For simple integrations, you can use the REST API directly with streaming:
1curl -N -X POST \2 -H "Authorization: Bearer YOUR_API_KEY" \3 -H "Content-Type: application/json" \4 -d '{5 "agent": "my-org/assistant@abc123",6 "input": {"text": "Hello!", "role": "user"},7 "stream": true8 }' \9 https://api.inference.sh/agents/runThe -N flag disables curl's buffering so you see events in real-time.
Without streaming (returns JSON with chat_id for subsequent messages):
1curl -X POST \2 -H "Authorization: Bearer YOUR_API_KEY" \3 -H "Content-Type: application/json" \4 -d '{5 "agent": "my-org/assistant@abc123",6 "input": {"text": "Hello!", "role": "user"}7 }' \8 https://api.inference.sh/agents/runWhat's Next?
- Python SDK — Python SDK reference
- Tool Builder — Full tool builder API
- REST API — Direct HTTP endpoints