Inference Logoinference.sh

Python SDK

Python SDK for inference.sh agents and apps.

The Python SDK provides both sync and async clients for running apps and chatting with agents.


Installation

bash
1pip install inferencesh

Running Apps

Basic Usage

python
1from inferencesh import inference2 3client = inference(api_key="inf_your_key")4 5result = client.run({6    "app": "infsh/echo",7    "input": {"message": "Hello from Python!"}8})9 10print(result["output"])

Streaming Progress

python
1for update in client.run({"app": "infsh/flux-schnell", "input": {...}}, stream=True):2    print(f"Status: {update['status']}")3    if update.get("logs"):4        print(update["logs"][-1])

Fire and Forget

python
1task = client.run({"app": "infsh/slow-task", "input": {...}}, wait=False)2print(f"Task ID: {task['id']}")

Agent SDK

Chat with AI agents programmatically.

Using an Existing Agent

Reference agents by namespace/name and version:

python
1from inferencesh import inference2 3client = inference(api_key="inf_your_key")4 5# Use an agent you created in the workspace6agent = client.agent("my-org/my-agent@abc123")  # Format: namespace/name@version7 8response = agent.send_message("Hello!")9print(response)

Creating Ad-Hoc Agents

Create agents on-the-fly without saving to workspace:

python
1from inferencesh import inference, AdHocAgentOptions, tool, string2 3client = inference(api_key="inf_your_key")4 5# Define tools6calculator = (7    tool("calculator")8    .describe("Performs math operations")9    .param("expression", string("Math expression"))10    .build()11)12 13# Create ad-hoc agent14agent = client.agent(AdHocAgentOptions(15    core_app_ref="infsh/claude-sonnet-4@latest",16    name="Math Assistant",17    system_prompt="You help with math. Use the calculator tool.",18    tools=[calculator],19))20 21response = agent.send_message("What is 42 * 17?")

Streaming Responses

python
1def handle_message(msg):2    if msg.get("content"):3        print(msg["content"], end="", flush=True)4 5def handle_tool(call):6    print(f"\n[Tool: {call.name}]")7    # Execute tool and return result string8    result = execute_my_tool(call.name, call.args)9    agent.submit_tool_result(call.id, result)10    11    # For widget interactions, you can also pass action + form_data:12    # agent.submit_tool_result(call.id, {13    #     "action": {"type": "confirm"},14    #     "form_data": {"name": "John", "email": "[email protected]"}15    # })16 17response = agent.send_message(18    "Explain quantum computing",19    on_message=handle_message,20    on_tool_call=handle_tool,21)

File Attachments

python
1# From file path2response = agent.send_message(3    "What's in this image?",4    files=[open("image.png", "rb").read()]5)6 7# From base648response = agent.send_message(9    "Analyze this",10    files=["..."]11)

Chat Management

python
1# Get current chat2chat = agent.get_chat()3print(f"Chat ID: {chat['id']}")4print(f"Messages: {len(chat['messages'])}")5 6# Stop generation7agent.stop_chat()8 9# Start fresh10agent.reset()

Tool Builder

Define tools with the fluent API:

python
1from inferencesh import (2    tool, app_tool, agent_tool, webhook_tool, internal_tools,3    string, number, integer, boolean, enum_of, array, obj, optional4)5 6# Client tool (runs in your code)7search = (8    tool("search_files")9    .describe("Search for files")10    .param("pattern", string("Glob pattern"))11    .param("recursive", optional(boolean("Search subdirs")))12    .build()13)14 15# App tool (calls another inference app)16generate = (17    app_tool("generate", "infsh/flux-schnell@latest")18    .describe("Generate an image")19    .param("prompt", string("Image description"))20    .build()21)22 23# Agent tool (delegates to sub-agent)24researcher = (25    agent_tool("research", "my-org/researcher@v1")26    .describe("Research a topic")27    .param("topic", string("Topic"))28    .build()29)30 31# Webhook tool (calls external API)32notify = (33    webhook_tool("slack", "https://hooks.slack.com/...")34    .describe("Send Slack message")35    .secret("SLACK_SECRET")36    .param("message", string("Message"))37    .build()38)39 40# Internal tools config41internals = internal_tools().memory().plan().build()

Full Tool Builder Reference


Async Support

python
1from inferencesh import async_inference2import asyncio3 4async def main():5    # Async app client6    client = async_inference(api_key="inf_...")7    result = await client.run({"app": "...", "input": {...}})8    9    # Async agent10    agent = client.agent("my-org/assistant@abc123")11    response = await agent.send_message("Hello!")12    13    # Async streaming14    async for msg in agent.stream_messages():15        print(msg)16 17asyncio.run(main())

Error Handling

python
1from inferencesh import RequirementsNotMetException2 3try:4    result = client.run({"app": "my-app", "input": {...}})5except RequirementsNotMetException as e:6    print(f"Missing requirements: {e.errors}")7    for err in e.errors:8        print(f"  - {err['type']}: {err['key']}")9except RuntimeError as e:10    print(f"Error: {e}")

File Upload

python
1# Upload separately2file = client.upload_file("/path/to/image.png")3print(f"Uploaded: {file['uri']}")4 5# Use in app input6result = client.run({7    "app": "image-processor",8    "input": {"image": file["uri"]}9})10 11# Or auto-upload from paths12result = client.run({13    "app": "image-processor",14    "input": {"image": "/path/to/local/image.png"}  # Auto-uploaded15})

REST API (curl)

For simple integrations, you can use the REST API directly with streaming:

bash
1# Single call with streaming2curl -N -X POST \3  -H "Authorization: Bearer YOUR_API_KEY" \4  -H "Content-Type: application/json" \5  -d '{6    "agent": "my-org/assistant@abc123",7    "input": {"text": "Hello!", "role": "user"},8    "stream": true9  }' \10  https://api.inference.sh/agents/run

The -N flag disables curl's buffering so you see events in real-time.

Without streaming (returns JSON with chat_id for subsequent messages):

bash
1curl -X POST \2  -H "Authorization: Bearer YOUR_API_KEY" \3  -H "Content-Type: application/json" \4  -d '{5    "agent": "my-org/assistant@abc123",6    "input": {"text": "Hello!", "role": "user"}7  }' \8  https://api.inference.sh/agents/run

What's Next?

we use cookies

we use cookies to ensure you get the best experience on our website. for more information on how we use cookies, please see our cookie policy.

by clicking "accept", you agree to our use of cookies.
learn more.